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Abstract— Vergence control and tracking allow a robot to
maintain an accurate estimate of a dynamic object three dimen-
sions, improving depth estimation at the fixation point. Brain-
inspired implementations of vergence control are based on
models of complex binocular cells of the visual cortex sensitive
to disparity. The energy of cells activation provides a disparity-
related signal that can be reliably used for vergence control.
We implemented such a model on the neuromorphic iCub,
equipped with a pair of brain inspired vision sensors. Such
sensors provide low-latency, compressed and high temporal
resolution visual information related to changes in the scene.
We demonstrate the feasibility of a fully neuromorphic system
for vergence control and show that this implementation works
in real-time, providing fast and accurate control for a moving
stimulus up to 2 Hz, sensibly decreasing the latency associated to
frame-based cameras. Additionally, thanks to the high dynamic
range of the sensor, the control shows the same accuracy under
very different illumination.

I. INTRODUCTION

Binocular, or stereo, vision is an anthropomorphic method
to estimate the distance of objects, or depth, in the three
dimensional space. Depth estimation is essential for success-
fully interacting with the environment, for example to avoid
obstacles during navigation, or to plan a correct grasp for
object manipulation.

Active vergence movements that put a target object in
the fovea of both eyes, naturally performed by humans and
primates, can improve depth accuracy by reducing visual am-
biguity [1]. It has been suggested that stereo vergence might
occur as a fast, reflexive action directly driven by the activity
of disparity-sensitive cells of the visual cortex [2], [3]. In the
corresponding model, vergence simply occurs as an inverted
response to cells sensitive to stereo disparity rather than from
high-level depth estimation, sensibly reducing complexity
and the cost associated with the computation of the full
depth map. Indeed, the processes of estimating disparity
and of controlling vergence are carried out in parallel by
two different neural mechanisms [4], and few works in
literature address both tasks (e.g., see [5]). The vergence
control can be approached by considering learning strategies:
in [6], a reinforcement learning framework is used to learn a
time-constrained closed-loop control rule; in [7], the authors
propose a learned sensory representation that guides vergence
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Fig. 1: Neuromorphic vergence control: (a) the iCub robot
equipped with DVS sensors verging on a pencil; (b) Events
from the DVS in response to the pen, in the three-
dimensional (x,y, t) space. Events from left (green) and right
(magenta) camera overlap when the vergence movement is
performed.

movements by exploiting a biological and unsupervised
reward; a binocular vergence control based on attention-
gated reinforcement learning is proposed in [8], where the
control policy is implemented by a neural network. More
recently, a neural architecture, trained by using a particle
swarm optimization, is described in [9]; and finally, a specific
neural network is used for learning and performing sensory-
sensory and sensory-motor transformations in [10]. A differ-
ent approach is to impose a desired behavior of the vergence
control [11]: in this way it is possible to exploit all the
neural resources, but there is the need of completely knowing
them. In this paper, we consider such an approach: indeed,
this model was shown to work reliably on the humanoid
robot iCub, that was able to continuously verge on a moving
target producing an accurate depth estimation [12]. The
performance of this model, based on image acquisition from
traditional frame-based cameras, suffers from latency up to
1 s, that produces a lag in the vergence movements, that
fails when tracking fast moving objects. To improve speed
and performance, and to perform a neuromorphic model on
neuromorphic hardware, we adapted this model to work with
the biologically inspired dynamic vision sensors (DVS) on
the humanoid iCub robot. DVS sensors [13] operate more
similarly to a biological eye, in comparison to the standard
frame-based cameras, producing a spiking response (events)
only when the light falling on a pixel changes, e.g. when
an object or the sensor itself moves. Contrary to frame-
based sensors, where a full frame is acquired at given times,
in these sensors only active pixels send their information
as soon as it is sensed and, therefore, they can offer low-



latency, high temporal precision and low redundancy visual
information together with the possibility of low computation
and power requirements.

We show that the neuromorphic model of vergence control
implemented with neuromorphic sensors achieves robust
vergence control in real-time, with only 200 ms latency, that
allows to reliably track objects moving at up to 2 Hz in the
direction of the robot, in a wide range of illumination.

A. Stereo Vision with Event-driven Cameras

Traditional computer vision methods for stereo matching
and depth estimation have been adapted to event-driven
camera data, improving the state-of-the-art over the last
decade [14]–[18].

In the the “co-operative” approach proposed by [18], a
dynamic cooperative neural network is designed to extract
a global spatio-temporal correlation for input events: sets of
inhibitory and excitatory units, created by the intersection
of pixel pairs in the left and right images, interact with
each other based on temporal correlation of stereo-events
and physical constraints. All the other proposed algorithms
attempt to exploit the high temporal precision of the DVS,
performing one-to-one matching of events between the left
and right camera that occur within a very short time win-
dow [14], [15]. However, due to jitter in event timing, as
well as mismatch between the pair of sensors, temporal
precision alone was found not to be accurate enough. Further
constraints such as polarity, ordering and epipolar restrictions
improved performance [16]. Finally, to further increase the
discrimination of stereo event-matching, appearance features
in the form of edge-orientations were implemented to en-
sure geometric consistency in a neighbourhood around the
events [17]. The orientation was estimated using a bank of
biologically plausible Gabor filters that respond to oriented
edges. The resulting implementation was validated by mea-
suring the depth of three objects [17], given the stationary
stereo set-up was properly calibrated.

Other implementations of Gabor filters have been used
with event-driven sensory input for various tasks such as
feature tracking [19], velocity estimation [20] and feature
matching [14], [15]. In the event-driven context, filter convo-
lution can usually be performed cheaply, since it only needs
to occur in a spatio-temporal window where events exist, and
in terms of computational complexity, the biological models
are well suited to the biologically inspired sensor data.

B. Vergence Control with Binocular Gabor Filters and
Phase-Shift Model

Gabor filters were initially proposed as a model for the
response of neurons to differently oriented stimuli in the
visual cortex. Physiological studies [2], [3] have suggested
that binocular neurons with a phase-shift across the left and
right portions of their receptive field respond to stimuli at
different disparities. This effect can be modelled using a bank
of Gabor filters with a phase-shift between left and right
components of each filter. Fig. 2 shows the gain of three
different Gabor filters tuned to different disparities, obtained

by shifting the phase of the right Gabor component with
respect to the left, whose phase is set to 0.

The minimisation of the average energy level of such
a bank of phase-shifted Gabor filters directly controls the
vergence of stereo cameras, without the explicit calculation
of the disparity of the scene. The depth estimation of the
object can then be calculated through the geometry of the
relative pose between cameras [21], as opposed to relying on
exact matching of pixels in visual space. Vergence control
was shown to operate with a 0.5 Hz stimulus and an image
normalisation method was introduced to allow operation in
a variety of lighting conditions.

C. Event-driven implementation of the neuromorphic ver-
gence control

In this paper we present for the first time an event-driven
implementation of the neuromorphic model of vergence
control based on disparity tuned binocular Gabor filters
driven by the events generated by the neuromorphic dynamic
vision sensors. Our work is relevant because we demonstrate
the feasibility of a fully neuromorphic system for vergence
control. The implementation of vergence eye movements is
then useful towards salient objects and depth estimation in
a system where the stereo setup moves continuously. The
advantages of compressive and low-latency data acquisition
of event-driven cameras lead to a decrease in control latency,
crucial for robots interacting in real-time with the environ-
ment and the high dynamic range of the sensor lead the
control to be independent on illumination changes.

II. EVENT-DRIVEN PHASE SHIFT MODEL

Vergence control model based on Gabor filters with binoc-
ular phase-shift was originally used with standard frame-
based cameras. We describe how the disparity models are
applied to event-driven data and the vergence controller
itself.

A. Binocular Gabor Filters with a Phase-shift

The Gabor filter is composed of a Gaussian kernel function
modulated in the spatial domain with a sinusoidal wave and
responds strongly to object edges. A rotated filter responds
to an edge with a specific spatial orientation, θ . A binoc-
ular Gabor filter is applied to both left and right images
simultaneously with a phase shift, ψ , added to the spatial
frequency of the right image convolution. The maximum
response therefore occurs if the left and right images have
edges that are offset by an amount corresponding to the phase
shift applied, i.e. the binocular Gabor filter responds to a
given stereo disparity (Fig. 2).

We follow [12] in the implementation of the complex-
valued binocular Gabor filters, g, for each visual stimulus in
pixel position, (x,y):

g(x,y,θ ,ψ) = e−
xθ

2+yθ
2

2σ2 e j(2π fsxθ+ψ), (1)

where (xθ ,yθ ) is the pixel location rotated around the filter
centre by θ , σ is standard deviation of the Gaussian kernel,



and fs is the spatial frequency of the sinusoidal component.
We chose to shift the right component with respect to the
left one, which therefore is associated to a phase ψ = 0.
Convolving the Gabor filter with visual data results in a
complex number with a real and imaginary component,
which represents a quadrature pair of binocular simple cells.
Each event contributes to the energy level of the single filter
with orientation θi and phase shift ψ j, depending whether it
comes from left or right camera, as follows:

{
ri j = ri j +g(xL,yL,θi,0) if eL = (xL,yL, t)
ri j = ri j +g(xR,yR,θi,ψ j) if eR = (xR,yR, t).

(2)

The energy level ei j of the single filter is then computed
by summing up the squared responses of the quadrature
pair [22], as follows:

ei j = Re[ri j]
2 + Im[ri j]

2. (3)

A filter’s response will be maximum when the cell’s binoc-
ular phase difference matches the disparity of the stimulus,
δ , according to:

δ =
∆ψ

2π fs
. (4)

The filters were applied to stereo visual data in [12] by
instantiating a bank of filters in the centre of a region-of-
interest (ROI) of the image with a variety of 5 orientations
and 7 disparities. Each filter was convolved with all pixels
in the ROI for both the left and right (with phase shift)
camera images taken from a stereo camera pair and resulted
in a scalar response from each of the instantiated filters. The
response of the filter can be used to estimate the disparity in
the images produced by the stereo pair [22], [23], however
vergence was achieved by directly controlling the desired
value of the filter responses.

B. Frame-based v.s. Event-based Cameras

A frame-based camera produces a two-dimensional image
corresponding to the amount of light falling onto each photo-
sensitive sensor, and does so at a set frame-rate, typically
10-30 Hz for robotic applications. The images are convolved
with the Gabor filter by multiplying the pixel intensity by the
filter gain associated with the pixel position and summing
the value for each pixel in the image (or sub-region in the
image).

An event-based camera produces an asynchronous, con-
tinuous stream of single pixel ‘events’ that occur when the
change in light falling on the photo-sensitive sensor changes
beyond a threshold. The event (ex,y,p,t ) is defined by its visual
position (x, y), the direction/polarity of light change (p), and
is time-stamped to microsecond resolution (t). Fig. 1b shows
an event stream in three-dimensional (x,y, t) space.

The convolution of the event-based visual information with
the binocular Gabor filters cannot be performed as with an
image and must be modified to accommodate the event-
based camera. However, the event-based camera offers fast

LEFT RIGHT

a) −13

b) −8

c) −4

Fig. 2: Left (first column) and right (second column) recep-
tive field for filters tuned at −13 (a), −8 (b) and −4 px (c).
Left and right events are shown by green (first column) and
magenta dots (second column) respectively. The central pair
of filters (b) matches the stimulus disparity and produces the
highest response. The real part of left and right receptive
field is shown.

convolution operations by performing incremental updates
to filter responses as the event-steam occurs rather than
performing the full convolution at each pixel location as is
required with an image. Typically an event-based algorithm
can respond with lower latency as output occurs after a single
pixel event, and does not require a full ‘frame’ of pixels to
be extracted from the camera.

C. Event-based Phase-shift Model

An incoming event can be convolved with the filter at
its visual position in the same way that an individual pixel
from an image is convolved by considering the intensity of
the event to be a binary value. A single event does not hold
enough information for the convolution to be relevant and
therefore an accumulation of the convolutions from a set of
events is required. A commonly used biological model for
accumulating and decaying energy is the leaky-integrate-and-
fire model [19], where the activity of the filter is updated
at each incoming event, following an exponential decay
function. However a model dependent on a fixed temporal
parameter [24], [25] is highly dependent on the speed of
the object’s motion, since it puts a lower bound on the
measurable velocity. In addition, the disparity signal becomes
weak when the object stops moving as the event-driven
camera stops producing a signal.

Instead, for each incoming event, we consider a fixed
window of the most recent N events such that of the pixel
locations in a central region-of-interest, only a fixed percent-
age can be active at any given time (green and magenta dots
in Fig. 2). Within the region-of-interest (ROI) we force both



high and low responses to produce a signal with a strong
contrast for vergence.

Given such a set of events, we use an incremental approach
in which as an event occurs in the ROI, the small convolution
operation is performed and incremented to the current energy
of the filter. Simultaneously we remove the oldest event from
the fixed window, and remove the associated convolution
energy. The energy of the filter is therefore constantly
updated given the N events in the filter without having to
perform the full convolution operation required by a frame-
based counter-part.

A fixed window of events is sensitive to the amount of
visual contrast presented by the stimulus. However, as we
use a ROI (and not the full scene) and we assume we need
a minimum number of events for vergence to occur, a fixed
number of events is suited to the task and is reasonably robust
despite the stimulus used. A fixed number of events also
provides a constant verging signal for a stationary stimulus.

The incremental filter response is continuously calculated
driven by incoming events according to Algorithm 1. At any
point in time, the response state of the filter can be observed
by applying Eq. 3.

Algorithm 1 Event-based Incremental Gabor Convolution

Input: ein{x,y, p, ts}
Add each event to the window and pop the oldest
W ← ein
if W.size()> N then

eout ←W.pop()
end if
For each filter do a single addition and subtraction con-
volution
for i ∈ orientations do

for j ∈ phases do
if eL then

ri j← ri j +g(xL,yL,θi,0)
end if
if eR then

ri j← ri j +g(xL,yL,θi,ψ j)
end if
if eoutL then

ri j← ri j−g(xL,yL,θi,0)
end if
if eoutR then

ri j← ri j−g(xR,yR,θi,ψ j)
end if
ei j = Re[ri j]

2 + Im[ri j]
2

end for
end for

D. Vergence Controller

Following [12], the vergence controller uses the energy
of the filters directly to produce the controller error signal.
Although a decoding phase has been proposed for the ex-
traction of the disparity from the population responses [22],

[23], the explicit disparity of the scene is not needed [11],
[12], as also proposed in humans [26].

The controller is implemented using the weighting
methodology proposed in [12], in which each filter response
contributes to the final control signal according to an indi-
vidual weighting value. A proportional velocity controller is
implemented, in which the control signal v̇ is obtained by
normalising for the total energies of the filter as:

v̇ = kp
∑

Nθ

i=1 ∑
Nψ

j=1 wi jei j

Nθ Nψ ∑
Nθ

i=1 ∑
Nψ

j=1 ei j

, (5)

where wi j is the set of relative filter weights, kp is the overall
gain of the controller, Nθ is the number of orientations and
Nψ the number of phase-shifts. The weights wi j are set to
be positive, negative or zero according to the disparity of the
tuned filters. Such configuration allows the filter responses
of positively and negatively tuned filters to negate each
other during correct vergence, resulting in zero (or very
small) vergence velocity. Vergence therefore occurs when the
response of positively (or negatively) tuned filters outweighs
others. An example is shown in Fig. 3, with only one
positively (red line) and one negatively (blue line) tuned
filter, along with the resulting control signal.

III. EXPERIMENTS AND RESULTS

In comparison to a frame-based camera, the event-based
camera produced data in the temporal domain differently. We
thus are interested in evaluating the temporal response of the
filters and vergence controller when using the event-based
approach. The cameras also respond to visual stimulus in
a spatially different manner (i.e. only responding to edges)
and will therefore produce a different filter response to a
highly textured object. Finally the cameras have a much
higher dynamic range than a standard camera and, while [11]
implemented a specific computational layer to normalise for
lighting conditions, we evaluate the inherent hardware-based
invariance to illumination.

The presented algorithm was implemented and tested on
the neuromorphic iCub head [27], equipped with a pair of
dynamic vision sensors (DVS) acting as stereo visual system,
with a total of 6 Degrees of Freedom (DOFs). In order to
quantitatively validate the experimental results, the ground
truth depth was measured using a 3D sensor device, placed
behind the iCub head, as shown in Fig. 1a, to capture the
depth of the stimulus relative to the head.

For the described experiments, we only controlled the
vergence angle, which can be set within a range of [0◦ -
50◦]. We empirically selected the following parameters: a
set of filters with Nθ = 5 orientations, Nψ = 7 phase-shifts,
σ = 6 px and fs = 0.02 1/px; a window W of N = 300
events, a ROI of 37×37 px and kp = 5000.

A. Experiment 1: Step input

In the first experiment, the stimulus was placed at a depth
of 300 mm and the fixation point at 400 mm, corresponding to
a vergence angle of 20◦. As shown in Fig. 4, when the trigger
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Fig. 3: Example disparities as a stimulus is at the correct
vergence point (middle), or further (left) or closer (right)
to the robot (the left camera is shown in green and the
right camera is shown in magenta). The corresponding filter
responses during a smooth transition towards the robot (a)
and the resulting relative control signal (b). The control
signal (b) is negative / positive for objects further / closer
than the fixation point, leading the eyes to diverge / converge
respectively.

signal activates the algorithm (black dashed line), the fixation
point depth converges to the ground truth within ∼ 200 ms,
decreasing considerably the 1 s frame-based latency.

B. Experiment 2: Sinusoidal input

In the second experiment, the stimulus oscillates at three
different speeds, with a frequency of approximately 0.5,1.25
and 2 Hz and an amplitude that varies between 250 and
500 mm, corresponding to a change in the vergence angle
from 23.7◦ to 12.4◦.

In the related work [12], the control yields an effective
tracking in depth of the stimulus, but several limitations can
be observed from the reported results:
• there is a temporal delay of ∼ 0.5 s between the

computed depth and the ground truth;
• the highest frequency reached is 0.5 Hz;
• the tracking accuracy deteriorates with increasing fre-

quency.
The event-driven algorithm takes advantage of the sensors’

microsecond temporal resolution to achieve a faster and
more accurate tracking: when the stimulus moves slowly,
at a frequency comparable to [12] (0.5 Hz in Fig. 5b), the
temporal delay is removed and the tracking results in a
more precise movement; the same accuracy is kept at higher
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Fig. 4: The response of the depth estimate (solid red) given a
stimulus step input (dotted blue) of approximately 100 mm,
in which vergence began at the dashed grey line. The rise
time is less than 250 ms.
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Fig. 5: The response of the depth estimate (red line) com-
pared to the ground truth depth (dashed blue line) at various
frequencies: 0.5 (a), 1.25 (c) and 2 Hz (e), with a smaller
time scale of the same data shown in (b), (d) and (f) for the
respective frequencies.

frequency (Fig. 5d), up to 1.25 Hz. The overshoot that is
observable in Figs. 5b and 5d is within the characterised
latency of 200 ms. The precision of the control decreases at
higher speeds (Fig. 5f), still achieving the correct movement,
but with a approximate mean latency of ∼ 200 ms.

C. Experiment 3: Illumination change

The experiment was repeated by setting three luminous
powers, 13410,3450 and 48 lm, the first two corresponding
to normal office lighting conditions and the last to dark
environment. In the frame-based approach, the luminous
power strongly affected the control gain, producing wide
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Fig. 6: The response of the depth estimate (red line) com-
pared to the ground truth depth (dashed blue line) in various
lighting conditions: high (a), medium (b) and no light (c).

oscillations around the depth of the stimulus with increas-
ing luminosity. An extra normalization stage was therefore
necessary to achieve an effective and stable control in various
lighting conditions. Event-driven sensors have instead a wide
dynamic range (120 dB) and reliably provide events from up
to 1 klx down to less than 0.1 lux. Therefore, as shown in
Fig. 6, the performance of the event-driven algorithm is still
reliable when the light is changing, removing the need for
the extra layer. The vergence control performs the correct
movement even in a completely dark environment (Fig. 6c),
reaching a much smaller level than the minimum value of
4400 lm achieved with frame-based cameras.

D. Experiment 4: Textured object

In the last experiment, a soft toy object (Fig.7a) was moved
in front of the iCub. The control was able to perform the
correct movement for a slow motion, but the performance
deteriorated with velocity, as shown in Figs.7b and 7c. A
textured object, indeed, generally produces more events than
a single edge stimulus moving at the same speed. Therefore
the textured object moving at higher speed produced many
events in a variety of locations in the ROI. The resulting
control signal is less clean, and has an overall lower mag-
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Fig. 7: Vergence on the toy (a) for 0.2 Hz (b) and 0.6 Hz (c)
motions (red) compared to ground truth (dotted blue). Three
examples are shown after vergence occurs (d), (e) and (f),
respectively.

nitude than with the previous stimulus. Moreover, the left
receptive field was centered in the middle of the region of
interest, therefore the algorithm implicitly assumed the object
to be in the center. While this was easy to guarantee for an
edge stimulus, there was no certainty that a textured object
produced a response in the middle of left camera, which
caused the filter response to be lower.

The effectiveness of the slow motion control was quali-
tatively evaluated by looking at instances of left and right
events that clearly overlapped after that vergence was per-
formed (Fig. 7d, 7e and 7f).

IV. DISCUSSION

The fixation range of the neuromorphic iCub was approx-
imately 250 mm to 450 mm, which was closer than [12] at
600 mm to 1200 mm. At smaller depths the vergence angle
is much larger and the change in vergence angle required
by the controller is much larger for a given depth error,
compared to a stimulus further away. The lower-latency
and faster response of the event-based vergence controller
makes it more suited to larger errors, and therefore closer
depths. However, the low resolution of the DVS camera
(128×128 pixels) results in a larger pixel quantisation error
and therefore a larger disparity error proportional to the
depth of the stimulus. The vergence range of the event-
based controller is limited by this resolution; however, higher
resolution event-based cameras are becoming increasingly
common.

Experiments were conducted with a plain background that
removed extraneous textures and distractions from the task
of verging on the exact stimulus that was also measured by
the ground-truth. The background used in [12] was, instead,
somewhat textured, however it was difficult to assess how the
texture influenced the algorithm. A plain background was
used as we separate the problems of attention (i.e. what
stimulus to verge upon) and the performance of verging
itself. It should be noted that when removing the back-drop,
the controller successfully verged on the wall behind (approx.



4 m away), seen as the left and right event visualisations
were aligned. However, the disparity error due to pixel
quantisation is too large for analysis at these distances.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have described a method for applying
neurmorphic models for real-time vergence control to neu-
romorphic sensors and tested it on the neuromorphic iCub,
equipped with two stereo DVS sensors. As opposed to frame-
based approach, where the filter bank is applied to the entire
frame at a set frame-rate regardless of any position change,
in the event-based algorithm the filter convolution can be
performed cheaply only when events occur.

We showed that the vergence response is faster using the
event-driven cameras, allowing the tracking in depth of the
stimulus up to 2 Hz, with a 200 ms latency, as opposed to
1 s frame-based. Moreover the DVS wide dynamic range
guaranteed the independence on the luminance, allowing
the tracking in both normal and dark environment and
eliminating the need of an extra computational layer.

The control was effective on a slow textured object, but
the performance deteriorated for faster motion, due to the
increased number of events that slowed down the control
and the assumption of the object being in the middle of the
region of interest that was not held. Possibly phase shifts
can be added in the left camera events to produce a better
vergence signal, or in combination with a horizontal gaze
controller.

Vergence and tracking of an object of interest allows a
robot to maintain an accurate estimate of a dynamic object in
three dimensions. We plan to use such 3D position to allow
the event-driven iCub to grasp objects in the environment
and dynamically interact with it.
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