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Abstract— The detection of consistent feature points in an
image is fundamental for various kinds of computer vision
techniques, such as stereo matching, object recognition, target
tracking and optical flow computation. This paper presents an
event-based approach to the detection of corner points, which
benefits from the high temporal resolution, compressed visual
information and low latency provided by an asynchronous neu-
romorphic event-based camera. The proposed method adapts
the commonly used Harris corner detector to the event-based
data, in which frames are replaced by a stream of asynchronous
events produced in response to local light changes at µs
temporal resolution. Responding only to changes in its field
of view, an event-based camera naturally enhances edges in
the scene, simplifying the detection of corner features. We
characterised and tested the method on both a controlled
pattern and a real scenario, using the dynamic vision sensor
(DVS) on the neuromorphic iCub robot. The method detects
corners with a typical error distribution within 2 pixels. The
error is constant for different motion velocities and directions,
indicating a consistent detection across the scene and over time.
We achieve a detection rate proportional to speed, higher than
frame-based technique for a significant amount of motion in
the scene, while also reducing the computational cost.

I. INTRODUCTION

Using conventional frame-based cameras, several tasks
such as stereo vision, motion estimation, object recognition
and target tracking require the robust localisation of pixels of
interest in images. For instance, in the field of visual motion
estimation, the well known aperture problem makes the
motion direction of an edge ambiguous, as only the motion
component orthogonal to the primary axis of orientation
of the object can be inferred based on the visual input.
Corner detection and tracking between two or more frames,
instead, can be used to produce the true flow. Therefore,
corner features, defined as the region in the image where
two edges intersect, must be detected consistently over
time, and from different orientations and viewpoints. Typical
processing in the frame-based paradigm occurs by looking
at the appearance of patches of pixels in each frame, where
measures derived from self-similarity [1], gradients [2], color
[3] and curvature [4] have been proposed to characterize
corner pixels.

Conventional cameras, while widely adopted, are not al-
ways optimal for robotics tasks as, during periods without
motion, two or more images can contain the same redundant
information, resulting in significant amount of computational
resources wastage. Furthermore, the fixed frame rate at which
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images are acquired is not suitable for tracking fast moving
targets: either tracking is completely lost above Nyquist rates,
large displacements of features between frames introduce
ambiguity when tracking multiple targets or targets can
appear blurred in the direction of motion and therefore
tracking is lost.

Event-based vision sensors (e.g. [5]) are biologically
inspired sensors that produce an asynchronous stream of
events in response to movements that occur in the sensor’s
field of view. In contrast to standard frame-based cameras,
only the information from changing elements in the scene
require processing, thereby removing data redundancy and
reducing the processing requirements. In addition, events can
be conveyed with a temporal resolution of 1 µs, allowing for
precise computation of scene dynamics orders of magnitude
faster than frame-based cameras. Responding only to changes
in contrast in the field of view, event-driven sensors are
natural contour detectors as events typically only occur on
object edges. The corner detection problem can also be
simplified as event-driven sensors inherently do not respond
to uniform regions in the field of view. For instance, the well-
known Canny edge detector was implemented in an event-
driven way [6], exploiting this innate property of the sensor
and achieving a more efficient and less resource demanding
detection than the frame-based counterpart.

In this paper, we applied the frame-based Harris corner
detection [2] to event-driven data, and showed that its per-
formance benefits from the native properties of the event-
driven sensors. While the innate edge enhancement facilitates
the corner detection, the sensors’ precise timing allows
dense detection of fast moving corners, reducing the overall
computational cost required by the frame-based method.
Event-based corner detection was previously proposed [7], in
which events that belong to the intersection of two or more
motion planes are labelled as corners. The technique requires
the inital calculation of optical flow, and is dependent on the
flow direction being accurate. We propose that the variation
around a corner can be detected directly by the pattern of
active pixels in a small neighbourhood around the corner
centre. While the data is motion driven (as motion inherently
triggers events), we show that the resulting detection is
independent on the speed and direction of the motion. The
proposed algorithm is characterised and validated on the
neuromorphic iCub humanoid robot [8], whose visual system
is composed of two dynamic vision sensors (DVS) mounted
as eyes in the head of the iCub, with total of 6 Degrees of
Freedom (DoFs).
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Fig. 1: A visualization of the asynchronous local contrast
map when the local window includes an edge (a) and a
corner (b). The black patterns correspond to “1” in the binary
local map (i.e. where an event occurred). The local change
in contrast is high in (b) along the two major axes, compared
to (a) that is high along one direction.

II. THE ALGORITHM

The Harris corner detection [2] is one of the most widely
used techniques to detect corner features in current frame-
based vision processing, thanks to its reliability, low nu-
merical complexity and invariance to image shift, rotation
and lighting [9]. The method detects if a pixel is a corner
by using a local window that is shifted by a small amount
in different directions, to determine the average change in
image intensity. The change is computed by calculating the
spatial gradient of the intensity. A corner can be identified if
a matrix containing the first derivatives of intensity has two
large eigenvalues, meaning that the major intensity gradients
centered around the pixel occur in two different directions.
We do not disregard events, but augment the information
carried by the single event when a corner is detected.

A. Event-based corner detection

The DVS sensor does not provide intensity measurements
to which frame-based corner detection can be directly ap-
plied, but a stream of events characterized by the pixel
position and the timestamp at which the event occurred.
Since pixels only respond to local variations of contrast in the
visual scene, for this application, we create an asynchronous
local contrast map for each event, as shown in Fig. 1, and
use the Harris score to compare the information generated
from the current active pixel to that of surrounding pixels.

As a single event does not provide enough information
alone, events need to be accumulated to create an informative
representation of the world. However the data structure to use
for processing the event stream is still an open question. A
temporal window [10] is dependent on the velocity of the
object in the environment and over- or under-estimating it
results in a motion-blur effect or incomplete representation.
As the visual stream of events is intrinsically related to the
motion of the object, we chose a representation with a fixed
number of events that is not affected by the speed, although
is scene-dependent. We then need to integrate events over
space to localize features in the scene.

Therefore, for each polarity, we consider a surface of
events in the three-dimensional spatio-temporal domain,

composed of the two dimensions of the sensor and an
additional dimension representing time. For each incoming
event, the surface maps the pixel position of the event to its
timestamp, such that it will represent the latest timestamps
evolving in time: Σt : N2 → R,p = (x, y)T → t =
Σt(p) [11], and only the most recent N events are used
to asynchronously update the surface Σt(x, y).

For the current event ei = (pi, ti, poli), we define a local
spatial window (W ), L pixels wide, and associate to the
pixels’ positions inside the window 1 or 0 depending on
whether an event is present on the surface at that pixel
location, obtaining the binarized surface Σb:

Σb : N2 → N
if ∃ e at p → Σb(p) = 1

otherwise → Σb(p) = 0

(1)

We then compute the gradients of the obtained binary
surface ∇Σb = [dΣb

dx ,
dΣb

dy ] and use them to compute the
symmetric matrix M2×2, as follows:

M(ei) =
∑
e∈W

g(e)

 dΣb(e)
dx

2 dΣb(e)
dx

dΣb(e)
dy

dΣb(e)
dy

dΣb(e)
dx

dΣb(e)
dy

2

 (2)

where g(e) is a Gaussian window function.
Similarly to the original Harris algorithm, we associate a

score R to each event ei, computed as:

R(ei) = det(M)− k trace2(M) =

λ1 λ2 − k (λ1 + λ2)2
(3)

where λ1 and λ2 are the eigenvalues of M .
Three cases will hold:
• if the patch includes few events due to the noise that

occurs in the sensor, there is a negligible variation of
contrast, leading both eigenvalues λ1 and λ2, and thus
R, to be small;

• if the patch includes one edge (as in Fig. 1a), there is a
high variation of contrast in the direction of the edge,
leading one eigenvalue to be high and the other to be
small, and thus R to become negative;

• if the patch includes two edges (as in Fig. 1b), there
is a high contrast variation along the two major axes,
leading both eigenvalues λ1 and λ2 to be high, and thus
R to be positive: a corner event is probable. A special
case is the line-ending, which can be seen as corner
if the edge is thick enough to produce high contrast
variation on both directions.

Based on these considerations, if R(ei) is greater than a
set threshold S, the event ei is labelled as corner event.

III. EXPERIMENTS

In the event-driven paradigm, the visual stream of events
is dependent on the amount of motion in the camera’s field
of view (due to objects moving or due to the camera itself
moving). Therefore the data generated by the camera is
motion-dependent and the corner detection algorithm needs
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Fig. 2: Distribution of the score for different velocities magnitudes and corner orientations. Each row shows results for the
dataset obtained with the same orientation and different magnitudes. The first row shows the score distribution for 15 degrees
orientation and 10 deg/s (a), 40 deg/s (b) and 100 deg/s (c) magnitudes. The second row shows the score distribution for
60 degrees orientation and 10 deg/s (d), 40 deg/s (e) and 100 deg/s (f) magnitudes. Black dots represent the initial window
of 1000 events. Only one polarity is shown for visualisation.

to be invariant to different motion types. For example, a
corner oriented at 45 degrees to the direction of motion
should produce similar edge velocities and strengths evenly
around the corner centre. As the orientation angle changes,
the relative strengths and velocities (due to camera aperture
problems affecting optical flow) can also vary.

We characterised and tested the event-based corner detec-
tion on data collected from the dynamic vision sensor (DVS)
mounted on the iCub robot [8], performing two different
sets of experiments. The first set was performed by moving
the iCub’s eyes in front of a controlled pattern, in order to
determine the detection sensitivity to various motion speeds
and relative orientations of corners and velocity directions.
In order to evaluate the detection response at different
velocities, we moved the cameras at several speeds and also
rotated the pattern to achieve different relative orientations.
We used black and white “images”, which are similar to the
frame-based approach, with the difference that the contrast
change is much sharper, without any gradient. Therefore the
response due to change in angular magnitude and image
rotation, as already shown in [2], should not significantly
change in the event-driven method.

The second experiment was performed mimicking a typi-
cal scenario in which the iCub is used, with the robot looking
around in the environment, where several objects are placed
at different distances, to determine the robustness of the
method in a real scene and the effectiveness and consistency
of the detection over time.

A. Characterization with a controlled input

The stream of events from the iCub’s camera was recorded
while the robot was observing a static checkerboard, moving
the eyes horizontally from left to right, at 7 different veloc-
ities, from 10 up to 100 deg/s, with a step of 15 deg/s. For
each acquisition, the checkerboard was rotated at 7 different
orientations, from 0 to 90 degrees, with a step of 15 degrees.
For this experiment, we empirically selected N = 1000
events and a window of L = 7 pixels.

As shown in Fig. 2, events located on a corner exhibit a
significantly higher score than events located on the edges.
This indicates potential for speed and orientation invariant
detection. Events on line endings produce a high score as
well when the edge is thick (top line-endings in Fig. 2a and
bottom line-endings in Fig. 2d). However, the line-ending is
a feature point with a high information content, and is also
considered a reasonable feature point for tracking. The score
at the start is higher than the rest of the dataset. This seems
related to the off polarity, as the score distribution is more
uniform when we consider the on polarity. Importantly the
scores calculated are consistent across different orientations
and speeds qualitatively seen in Fig. 2.

To quantitatively assess the detection performance with
different velocities and orientations, we compared the corner
events detected by the proposed algorithm with a ground
truth obtained by manually labelling the start and the end
positions of each corner. As the motion profile was very
simple (horizontal motion), we only cared about the corner
position, disregarding any timing information and we con-
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Fig. 3: Slice of 1000 events and ground truth corners (a) and
distribution of the score compared to the distance from the
ground truth (b). The threshold S is marked by the dashed
black line. Blue dots represent the score around the ground
truth (red line) of each event inside the dotted black square
within the slice of 1000 events.

sidered that corner positions should not deviate from ground
truth over time. In order to set a threshold, we considered the
events located around a single corner within a slice of 1000
events (shown in Fig. 3a) and their score distribution with
respect to the corresponding ground truth (shown in Fig. 3b).
The distribution has a bell-shape, with a strong peak in the
center (i.e. on the events located on the ground truth) that
sharply decreases towards a steady state, as we move away
from center (i.e. on the events located on the edges). If a
threshold S is set equal to 0.8, we can easily isolate the
high scores on corners from the lower edge scores with an
estimated error distribution of 2 pixels.

In order to evaluate how well this measure generalises
across different corners, the threshold was applied to all the
detected corners in the scene. The detection accuracy error
was further characterised, by computing the distance between
algorithmically detected corners and the ground truths, for
every manually labelled corner/line-ending shown in Fig 3a,
at different speeds and orientations. As shown in Fig. 4, the
error is mostly consistent for all corners in all datasets with
varying velocities and orientations. The typical detection
error is still less than 2 pixels, reaching a mean value of
1.1±0.3 px when varying the speed (Fig. 4a) and 1.2±0.4 px
when varying the orientation (Fig. 4b). The overall detection
error is also comparable to the results obtained in [7] and
thus we assert the event-based Harris detection has similar
error distribution as the previously proposed intersection of
motion constraints.

We compared the number of Harris processing required
by frame and event-based methods, assuming the traditional
camera to capture frames at 30 fps, with the same spatial
resolution of 128 × 128 pixels of our event-based camera.
While the traditional method computes the Harris score for
each pixel, performing a global search of the maximum
response over the entire frame, the event-based technique
computes the score asynchronously and locally only when
events occur. Therefore, the first requires a constant pro-
cessing rate (30 × 128 × 128 = 496480 proc/s), and the
second requires a variable processing rate depending on
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Fig. 4: Mean error at S = 0.8 for all the corners at fixed
orientation (60 deg) and different speed magnitudes (a) and
different orientations at fixed speed (10 deg/s) with respect
to the corner’s direction (b). Blue dots represent the initial
window of 1000 events.

the number of processed events (which can vary with total
number of edges in the scene and their velocities). As shown
in Fig. 5a, the event-based corner detector drastically reduced
the computational demand for all speeds when viewing the
checker-board pattern. We also show the computational cost
for a typical scene where several objects are placed in front
of the robot, which moves its cameras at typical speeds (3, 5
and 20 deg/s), with the black crosses. The computation cost
under typical conditions is therefore approximately ∼ 94%
lower than a frame-based camera, demonstrating the event-
based advantage in terms of resource consumption.

Similar considerations apply for the number of detections
per second, shown in Fig. 5b. For a fair comparison, we
considered a single moving corner in the different datasets
and computed the number of detections per second taking
into account only the corner events that belonged to the
associated ground truth line. While the frame-based detec-
tion rate is constant (∼ 30 det/s assuming a single corner
detection per frame), the event-based detection rate increases
with velocity, achieving similar results for low speed (< 10
deg/s), but clearly outperforming the frame-based approach
for higher speed (> 25 deg/s), reaching on average ∼ 250
det/s for the largest velocity. We note that even the fast
moving target produces spatially-dense observations, which
has advantages for tracking as no information is lost (i.e.
between frames), and has implications in removing tracking
ambiguity between multiple targets. Also, while the frame-
based approach suffers from 33 ms of latency, inherently due
to the camera frame rate, the event-based detector processes
event by event, by reducing the latency down to few µs.

B. Characterization for a real scene

To test the robustness of our method in a real scenario,
we performed experiments in a typical iCub’s environment,
where several objects (a sponge, a car and a robot toy,
a book, a tissue and a tea box) are placed on a table in
front of the robot (as in Fig. 6) which in turn moves its
eyes along several directions (shown in Fig. 7a) at a speed
of 5 deg/s, while acquiring event-data from the scene. We
empirically selected N = 2000 events and a window of
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Fig. 5: Comparison between the computational cost (a) and
the detection rate (b) of the frame-based detector (dotted line)
and the event-based detector, for different velocities of iCub’s
eyes and different orientations of the checkerboard. The cross
markers indicate the number of processing for the complex
scene (realistic velocities generally used on the robot have
been tested). Both polarities are processed.

Fig. 6: Experimental setup for corner detection in typical
iCub environments.

L = 5 pixels. The algorithm produced detection of many
moving corners in the scene and examples of the detected
corners for different motion directions are shown in Fig. 7.
The sharpest corners are consistently detected over time and
along different trajectories (e.g. the book and the sponge four
corners). However, the low spatial resolution of the camera
makes less-sharp corners more ambiguous in the binarised
images, and the exact central position of corners (e.g. from
the toy robot or toy car) are not as well defined.

Evaluating the detection consistency over time including
changes in motion direction is important to produce a proper
signal for tracking. Given a rough estimate of ∼ 45 manually
labelled corners in the visual scene, we grouped the algo-
rithmically detected corner events that belonged to the same
moving corner and computed the number of the grouped
corner events over time. The total number of corners detected
has a mean value of 45.7, remaining mostly consistent over
time, indicating the corner detection algorithm responds con-
sistently even in more cluttered datasets, as shown in Fig. 8a.
During periods in which the eyes are changing direction, the
low motion results in a low amount of events, and hence,
corner detections. An example of traces in (x, y, t) space
from the ‘b’ trajectory is shown in Fig. 8b. One corner
was selected from each object in the scene and the (x, y)
trajectory was manually tagged over the full dataset, shown
in Fig. 9. The ground truth was computed for each corner
by accumulating events over a period of 1s and manually
labelling the central corner pixel. We visually identified a
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Fig. 8: Number of detected corners over time (a) and detected
corner events over time in the (x, y, t) space (b) along the
b trajectory (Fig. 7a). Blue dots represent the initial window
of 2000 events corresponding to Fig. 7b and colors indicate
corner events belonging to different moving corners.

radius of 5 pixels, marked by the green circles in Fig. 7b,
within which corner events were considered as possible
corner candidates. The limited testing range is necessary as
many corners are spatially close making the analysis of actual
corner accuracy difficult from a data association perspective.

As our data is motion-driven, during periods of no-
motion we do not get detections, but importantly when
motion occurs, consistent corner events occur in regions
corresponding to the ground truth with an overall average
error < 3 pixels (significantly lower than the 5 pixel limit).
The error increases for objects with corners visually not well-
defined: the robot toy and the car toy corners are detected
with an error of 2.8± 1.4 px and 3.1± 1.3 px respectively.
This also occurs as the spatially closest corners merge even
within the selected radius of 5 pixels (e.g. it’s difficult to
disentangle corner events that belong to different car toy
corners). However, the trajectories traced by such points on
the image plane appear smooth and coherent to changes in
time and in motion direction and we therefore propose that
a suitable tracking method could be successfully applied.

IV. DISCUSSION AND FUTURE WORK

In this work, we have presented the event-driven Harris
algorithm for corner detection using the event-driven DVS,
which is able to detect moving corners in visual scenes with
lower computation cost than a frame-based camera, and at a
detection rate that is proportional to speed. Event-based Har-
ris detection processes asynchronously each event whenever
the corner moves by a pixel, thus requiring processing only
during motion and achieving low latency. In comparison,
the frame-based camera receives an observation at a set
frame-rate regardless of any position change and with higher
latency.

We used a data structure with fixed number of events,
which was tuned according to the scene complexity, resulting
in a higher value for the real scene dataset. This parameter
however did not affect the score and the same threshold could
be used for both datasets. Other representations are still under
investigation.

We showed that, while motion is required to produce
events, the algorithm was invariant to speed and relative
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Fig. 9: Trajectories of the x (a) and y (b) coordinates of the detected corner events (dots) with corresponding ground truths
(solid lines) and mean and standard deviation of the error for each object (c). Shaded areas indicate periods of non motion
of the camera that do not produce detections.

corner orientation and the direction of the corner velocity.
The latter being important if spatio-temporal gradients are
used to compute optical flow as, in this situation, the aperture
problem produces erroneous flow estimations. The algorithm
was competitive with previous literature, achieving similar
error distributions (< 2 pixels), but without the need for
the calculation of optical flow. In natural scenes the number
of corners remained reasonable constant over time, and
detection plots indicate a strong potential for robust tracking
of corners on the event-driven iCub robot. We plan to use,
in particular, these trackable features to generate a sparse
optical flow that is unaffected by the aperture problem. Such
flow can be used for learning entire scene flow statistics for
characterising the ego-motion of the event-driven iCub.
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